Computing the Iwasawa decomposition of a symplectic matrix by Cholesky factorization

نویسنده

  • Tin-Yau Tam
چکیده

We obtain an explicit Iwasawa decomposition of the symplectic matrices, complex or real, in terms of the Cholesky factorization for positive definite n×n matrices. We also provide a MATLAB program to compute the decomposition. 1. Iwasawa decomposition of the symplectic groups Let G be the real (noncompact) symplectic group [3, p.129] (the notation there is Spn), [4, p.265] G := Spn(R) = {g ∈ SL2n(R) : g Jng = Jn}, Jn = ( 0 In −In 0 ) . For example,   cosh t sinh t 0 sinh t sinh t cosh t sinh t 0 0 0 cosh t − sinh t 0 0 − sinh t cosh t   ∈ Sp4(R), t ∈ R. By block multiplication, the elements of G are of the form [3, p.128] (1.1) ( A B C D ) , where A C = C A, B D = D B, A D − C B = In. The Iwasawa decomposition of G = KAN is given by [4, p.285] K = {( A B −B A ) : A + iB ∈ U(n) } = O(2n) ∩ Spn(R), A = {diag (a1, . . . , an, a−1 1 , . . . , a−1 n ) : a1, . . . , an > 0}, N = {(A B 0 (A−1)T ) : A real unit upper triangular, AB = BA } . That is, if g ∈ G, then g can be written in the form g = kan, k ∈ K, a ∈ A, n ∈ N , and the decomposition is unique. When g ∈ G is viewed as a 2n× 2n real nonsingular matrix, we have the usual QR decomposition [3, p.143] of g = k′a′n′, where k′ is special orthogonal, a′ is positive diagonal and n′ is real unit upper triangular and the decomposition is unique. However, it is not the Iwasawa decomposition of g = kan ∈ G, k ∈ K, The results in the paper were presented in R.C. Thompson’s Matrix Meeting held at San Jose State University, Nov., 2004 2000 Mathematics Subject Classification. Primary 15A23, 22E46 c ©0000 (copyright holder)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Iwasawa decomposition of a symplectic matrix

We consider the computation of the Iwasawa decomposition of a symplectic matrix via the QR factorization. The algorithms presented improve on the method recently described by T.-Y. Tam in [Computing Iwasawa decomposition of a symplectic matrix by Cholesky factorization, Appl. Math. Lett. (in press) doi:10.1016/j.aml.2006.03.001]. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Supernodal Symbolic Cholesky Factorization on a Local-Memory Multiprocessor

In this paper, we consider the symbolic factorization step in computing the Cholesky factorization of a sparse symmetric positive definite matrix on distributedmemory multiprocessor systems. By exploiting the supernodal structure in the Cholesky factor, the performance of a previous parallel symbolic factorization algorithm is improved. Empirical tests demonstrate that there can be drastic redu...

متن کامل

CIMGS: An Incomplete Orthogonal FactorizationPreconditioner

A new preconditioner for symmetric positive definite systems is proposed, analyzed, and tested. The preconditioner, compressed incomplete modified Gram–Schmidt (CIMGS), is based on an incomplete orthogonal factorization. CIMGS is robust both theoretically and empirically, existing (in exact arithmetic) for any full rank matrix. Numerically it is more robust than an incomplete Cholesky factoriza...

متن کامل

Asymptotic Behavior of Iwasawa and Cholesky Iterations

We extend, in the context of a connected real semisimple Lie group, some results on the QR iteration and the Cholesky iteration of a nonsingular matrix. A group theoretic understanding of the abstract mechanisms of the iterations is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2006